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The mechanism by which inhaled smoke causes the anatomic lesions
and physiologic impairment of chronic obstructive pulmonary dis-
ease remains unknown. We used high-density microarrays to mea-
sure gene expression in severely emphysematous lung tissue re-
moved from smokers at lung volume reduction surgery (LVRS) and
normal or mildly emphysematous lung tissue from smokers under-
going resection of pulmonary nodules. Class prediction algorithms
identified 102 genes that accurately distinguished severe emphy-
sema from non-/mildly emphysematous lung tissue. We also de-
fined a number of genes whose expression levels correlated strongly
with lung diffusion capacity for carbon monoxide and/or forced
expiratory volume at 1 s. Genes related to oxidative stress, extracel-
lular matrix synthesis, and inflammation were increased in severe
emphysema, whereas expression of endothelium-related genes was
decreased. To identify candidate genes that might be causally in-
volved in the pathogenesis of emphysema, we linked gene expres-
sion profiles to chromosomal regions previously associated with
chronic obstructive pulmonary disease in genome-wide linkage
analyses. Unsupervised hierarchical clustering of the LVRS samples
revealed distinct molecular subclasses of severe emphysema, with
body mass index as the only clinical variable that differed between
the groups. Class prediction models established a set of genes that
predicted functional outcome at 6 mo after LVRS. Our findings
suggest that the gene expression profiles from human emphysema-
tous lung tissue may provide insight into pathogenesis, uncover
novel molecular subclasses of disease, predict response to LVRS,
and identify targets for therapeutic intervention.

Chronic obstructive pulmonary disease (COPD) is the fourth
leading cause of death in this country and is projected to be the
number three cause of death globally by 2020 (1, 2). Despite
the well-documented role that cigarette smoking plays in the
genesis of COPD, it is unclear what steps are involved in its
pathogenesis and why only 10–20% of smokers actually develop
the disease (3). Most if not all patients with COPD develop the
characteristic features of lung emphysema with its pattern of
alveolar destruction and abnormal repair, as well as abnormal
airway and alveolar inflammatory responses to noxious particles
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and gases that persist even years after smoking cessation (4, 5).
Current pathogenetic theories for the development of emphy-
sema include chronic airway inflammation, an imbalance be-
tween protease and antiprotease activity, dysregulation of oxida-
tive stress, and amplifying mechanisms that may perpetuate the
chronic inflammatory processes, leading to the progressive de-
struction and aberrant repair of the lung connective tissue matrix
(6). Recent studies have suggested that increased apoptosis of
the alveolar wall accounts in part for the loss of lung tissue
that characterizes emphysema (7, 8). Transgenic and null-mutant
mouse studies have identified a number of genes and pathways
that, when altered, result in the morphologic changes of emphy-
sema (9, 10).

The emphysematous phenotype of COPD is associated with
increased resting lung volumes and low lung diffusion capacity
for carbon monoxide (DlCO), tools that have allowed for the
proper selection of patients likely to benefit from lung volume
reduction surgery (LVRS) (11). In addition, although emphy-
sema is a disease primarily of the lungs, it is associated with
important systemic consequences, which include malnutrition
with a low body mass index (BMI) (12) and impaired peripheral
muscle function (13). These clinically relevant expressions of the
disease have been associated with detectable systemic changes,
including evidence of oxidative stress, activation of circulating
inflammatory cells, and increased levels of the proinflammatory
cytokines nitrogen oxide, interleukin 8, and tumor necrosis
factor-� (14). These peripheral manifestations are so important
that an integrative clinical score that includes BMI, degree of
obstruction, perception of dyspnea, and the 6 min walk distance
(also known as the BODE index) proved to be an excellent
predictor of mortality in a large cohort of patients followed for
5 yr (15).

Despite the many studies aimed at defining the pathogenesis
of emphysema, there have been few reports of altered gene
expression profiles in small numbers of human emphysematous
lung tissue (16, 17), and, to our knowledge, no studies that utilize
high-density microarray technology to define gene expression
profiles of emphysematous human lungs across a large number
of smokers with severe emphysema. Microarray technology pro-
duces a global picture of gene expression in lung tissue that may
provide insights into the pathogenetic mechanisms involved in
COPD. Using high-density DNA microarrays, we compared se-
verely emphysematous tissue removed at LVRS to that of nor-
mal or mildly emphysematous lung tissue resected from smokers
with nodules suspicious for lung cancer. Class prediction algo-
rithms identified genes that distinguish severe emphysema from
mild or no emphysema. By mapping these genes onto their chro-
mosomal loci, we identified those that fall within chromosomal
regions previously associated with COPD in genome-wide linkage
analyses. The combination of differential expression and chromo-
somal linkage identifies candidate genes that may be causally
involved in COPD. We also defined genes that strongly correlate
with pulmonary phenotypic expressions of the disease, such as
diffusion capacity for carbon monoxide (DlCO) and forced expir-
atory volume at 1 s (FEV1), in an attempt to link gene expression
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to molecular processes that predominate in lung parenchyma or
in small conducting airways. Through unsupervised analysis, we
uncovered a novel molecular subclass of severe emphysema in
patients with clinically important systemic manifestations of the
disease, such as lower BMI. Finally, our data raise the possibility
that gene expression profiles in severely emphysematous lung
tissue may predict BODE outcome after LVRS.

Methods

Patient Recruitment

Human lung tissue was obtained from two groups of patients. The
patients with severe emphysema (n � 20) (FEV1 � 50% predicted)
underwent lung volume reduction surgery and were enrolled in the
Overholt–Blue Cross Emphysema Surgery Trial (OBEST) between
December 1998 and December 2002 in eastern Massachusetts. The
control subjects were enrolled during the same time period from a
population of current or former smokers with no or mild airflow limita-
tion undergoing thoracotomy for localized pulmonary lesions suspicious
for malignancy (n � 14) at Caritas St. Elizabeth’s Medical Center,
Boston. Patients with severe emphysema were included if they had a
clinical and radiologic diagnosis of emphysema, were less than 75 yr of
age, had dyspnea (Medical Research Council scale � 2), and were on
maximal medical therapy. Exclusion criteria included patients with �1-
antitrypsin deficiency, tobacco use within 16 wk preceding surgery,
significant comorbidities, FEV1 � 50%, homogeneous emphysema, or
an inability to walk more than 150 m after pulmonary rehabilitation (a
complete list of inclusion and exclusion criteria is available in the online
supplement). For the control group, all patients were former smokers
and all underwent high-resolution computed tomography scans of the
chest to exclude bullous emphysema before surgery. In addition, pa-
tients were excluded from the control group if their FEV1 was less than
45% predicted or their DlCO was less than 50% predicted.

The forced vital capacity, FEV1, lung volumes, and single breath
DlCO were determined following ATS guidelines. The 6-min walk dis-
tance, BMI, and modified Medical Research Council dyspnea scale
used to calculate the BODE index have been previously described (15).
The patients were evaluated before and 6 mo after surgery. All patients
provided written informed consent and the study was approved by the
human studies committees of the participating centers.

Specimen Collection

At the time of surgical resection, lung tissue specimens were immedi-
ately frozen in dry ice and stored at �80�C. Each specimen was accom-
panied by an adjacent sample of lung tissue for histologic confirmation.
For control subjects, histologically normal lung tissue adjacent to the
resected nodule was collected. RNA was extracted from the lung tissue
using TRIzol (Invitrogen, Carlsbad, CA) per the manufacturer’s proto-
col. Integrity of the RNA was confirmed with RNA denaturing gel.
Each tissue sample yielded 10–20 	g of RNA.

Microarray Data Acquisition and Preprocessing

A sample of 8–10 	g of total RNA from lung tissue was processed,
labeled, and hybridized to the Affymetrix HG-U133A Genechip (con-
taining � 22,500 human transcripts) (Affymetrix, SantaClara, CA) as
described previously (18) (see online supplement for detailed protocol).
A single weighted mean expression level for each gene along with a
detection p-value (which indicates whether the transcript was reliably
detected) was derived using Microarray Suite 5.0 software (Affymetrix).
We scaled the data from each array (target intensity of 100) to normalize
the results for interarray comparisons. The list of genes on this array
is available at http://www.affymetrix.com/support/technical/byproduct.
affx?product�hgu133.

To filter out arrays of poor quality, several quality control measures
on each array were assessed, including review of the scanned image
for significant artifacts, background and noise measurements that differ
significantly from other chips, and presence on the array of bacterial
genes spiked into the hybridization mix. Furthermore, arrays failing
two out of the three following quality control measures were excluded
from the study: the 3
 to 5
 ratio of the intensities for glyceraldehyde-
3-phosphate dehydrogenase (ratio � 4 considered suitable), percent of

genes detected (� 20% of genes detected was acceptable), and percent
of gene outliers (� 8% gene outliers was satisfactory). The percent of
gene outliers is based on a computational algorithm developed to filter
outlier arrays by quantifying the percent of genes on each array that
are more than 2 SDs from the mean for the gene across all arrays. A
total of 4 of 34 samples (2 patients undergoing LVRS and 2 control
patients) were excluded based on the quality control filters described
above. To remove genes that were not reliably detected, we filtered
out genes whose detection P-value is not � 0.05 in at least 20% of all
samples (18), leaving 9,336 genes for the statistical and computational
analysis described below.

Class Prediction: Severe Emphysema Versus Normal Lung Tissue

Several class prediction algorithms were used to identify a group of genes
whose expression in the lung distinguished severe emphysema (n � 18)
from no or mild emphysema (n � 12). The rationale for this approach
stems from the fact that the effectiveness of any single class prediction
algorithm will depend on the nature of the data set, and it is therefore
prudent to evaluate microarray data using a diverse set of computational
algorithms and assign potential relevance to those genes that are repro-
ducibly selected by many protocols (19). The BRB ArrayTools package
(available at http://linus.nci.nih.gov/BRB-ArrayTools.html) includes sev-
eral class prediction methods: the compound covariate predictor, diagonal
linear discriminant analysis, one and three nearest neighbors predictor,
nearest centroid predictor, and support vector machines. A t test on
log-normalized data with a user-specified cutoff for significance level
identified differentially expressed genes between the two groups for
use in these predictors. Leave-one-out cross-validation was performed
and the overall cross-validation misclassification rate reported. Different
significance-level cutoffs were tried, and the cutoff giving the lowest cross-
validation misclassification rate for a given method was chosen and the
corresponding gene list was saved. In addition to BRB ArrayTools, we
used three other class prediction algorithms: prediction analysis of mi-
croarrays (20) (obtained at http://www-stat.stanford.edu/~tibs/PAM/),
the weighted voting (21) class prediction algorithm (implemented using
GeneCluster software obtained at http://www-genome.wi.mit.edu/cancer/
software/genecluster2/gc2.html), and the genetic algorithm and k-nearest
neighbor method described by Li and colleagues (22) (obtained at
http://dir.niehs.nih.gov/microarray/datamining/). The results of running
the genetic algorithm and k-neareast neighbor algorithm represent the
top-20 most frequently chosen genes in 10,000 near-optimal solutions.
All of the class prediction methods utilize leave one out cross-validation
except for prediction analysis of microarrays which uses 10-fold cross-
validation. Genes reported by at least four of the methods above (102
genes) were chosen for further analysis. See the online supplement for
details of each class-prediction algorithm applied.

Two-dimensional hierarchical clustering was performed across all
30 patients (severe emphysema and no or mild emphysema) and across
the genes, distinguishing severe from mild or no emphysema. Prior to
clustering, each gene was normalized across all samples to have a mean
of zero and a standard deviation of one. Clustering was performed
using an uncentered Pearson correlation similarity metric and average
linkage clustering with CLUSTER and TREEVIEW software programs
(http://rana.lbl.gov/EisenSoftware.htm). Functional classification of these
genes was obtained from the Genecards database (http://bioinformatics.
weizmann.ac.il/cards/), and statistical over/under-representation of func-
tional categories was determined using EASE software (http://david.
niaid.nih.gov/david/ease.htm).

Pearson Correlation

To determine the relationship between gene expression and DlCO,
FEV1, or BMI, Pearson correlations were computed using R software
version 1.6.2 (available at http://www.r-project.org/). The correlations
were computed for each of the 9,336 genes.

Mapping Gene Expression to Chromosomal Regions

Using genome-wide linkage analyses, Silverman and colleagues have
identified chromosomal short-tandem repeat (STR) polymorphic mark-
ers with logarithm of the odds ratio (LOD) scores � 1 that are linked
to various phenotypes of early-onset COPD (23–25) (summarized in
the online supplement, Table E7). To investigate if any of the class-
prediction genes that distinguish between severe and mild/no emphy-
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sema were located in susceptibility loci, 23 chromosomal regions con-
taining consecutive STR markers with LOD scores � 1 were visually
selected from the graphic linkage analyses presented in the various
studies. Genetic linkage units (cM) estimated from Silverman and col-
leagues were converted to their corresponding physical positions (base
pairs) using the Marshfield Genetic map (http://hgdownload.cse.ucsc.
edu/goldenPath/10april2003/database/stsMap.txt.gz). The start and stop
physical positions of each chromosomal region were estimated by find-
ing their respective closest markers on the Marshfield map (the markers
have data specifying both their physical and genetic linkage positions).
Chromosomal regions containing probe-sets on the class prediction list
were flagged (Table E8). These regions were further investigated to ex-
plore whether or not other differentially expressed probe-sets between
severe and mild/no emphysema, not included on the class prediction
list, were present. Probe-sets from the U133A array contained in the
filtered gene list of 9,336 probe-sets were mapped to their physical chromo-
somal locations using probe-set annotation from Affymetrix (http://www.
affymetrix.com/support/technical/byproduct.affx?product�hgu133).

Additional differentially expressed probe-sets between severe and
mild/no emphysema were identified by conducting a two-sample un-
equal variance t test on log-transformed microarray data for each of
the 9,336 probe-sets. The q-value proposed by Tibshirani and colleagues
(26) was used as a multiple comparison correction. Each gene was
reported with its P-value and q-value. The q-value of a particular gene
represents the proportion of false positives present in the group of
genes with equal or smaller P-values than the gene. The q-values were
calculated using the program Q-Value, downloaded from http://faculty.
washington.edu/~jstorey/qvalue/.

Class Discovery

Several filters were applied to the 9,336 genes to determine subsets of
genes that varied among the 18 patients undergoing LVRS. For each
gene, the maximum and minimum signals were identified across all
samples to calculate the difference in signal intensity as well as the
ratio of the two extremes. Gene lists were generated using the following
cutoffs for difference and ratio: a max/min difference of at least 300
and ratio of at least 5 (414 genes), 100 and 10 (583 genes), 500 and 3
(597 genes), 300 and 3 (1,028 genes), and 100 and 3 (3,386 genes). For
each of these gene lists, two-dimensional hierarchal clustering of the
genes and the 18 LVRS samples was performed using z-score–normalized
data, a Pearson correlation (uncentered) similarity metric, and average
linkage clustering with CLUSTER and TREEVIEW software programs.

Class Prediction: Outcome after LVRS

To distinguish between patients undergoing LVRS with a favorable
outcome after surgery versus patients whose condition worsened or did
not change (based on BODE score before and 6 mo after surgery),
the same class prediction algorithms described above were applied.
Multidimensional scaling (MDS) using Partek software 5.1 was con-
structed of all samples according to the expression of these class predic-
tion genes. The MDS plot was constructed from the raw expression
data for the genes across all the samples using orthogonal initialization
and Euclidean distance as the similarity metric. Principal component
analysis using the same data was also performed.

Real-time Quantitative RT-PCR

Quantitative real-time polymerase chain reaction (RT-PCR) was used
to confirm the differential expression of a select number of genes within
biologically relevant functional categories. Primer sequences were de-
signed with Primer Express software (Applied Biosystems, Foster City,
CA) based on alignments of candidate gene sequences. RNA samples
(500 ng of residual sample from array experiment) were treated with
DNAfree (Ambion, Austin, TX), as per the manufacturer protocol, to
remove contaminating genomic DNA. Total RNA was reverse-tran-
scribed using Superscript II (Gibco, Carlsbad, CA). A total of 5 	l of
the reverse transcription reaction was added to 45 	l of SYBR Green
PCR master mix (Applied Biosystems). Forty cycles of amplification,
data acquisition, and data analysis were performed in an ABI Prism
7700 Sequence Detector (Applied Biosystems). All RT-PCR experi-
ments were performed in triplicate on each sample.

TABLE 1. Demographic features for 30 subjects whose microarrays passed
the quality control filters

Severe Mild/No
Category Emphysema Emphysema P value Test‡

No. of patients, n 18 12
Age, yr 64 (3) 69 (7) 0.02 t Test
Sex, female/male 10/8 4/8 0.49 �2

BMI 23.2 (3.4) 28.3 (7.2) 0.04 t Test
Pack-years 61 (31) 43 (30) 0.12 t Test
FEV1 before BD (% pred) 21 (6) 65 (14) 1.26E-07 t Test
FEV1 after BD (% pred) 23 (6) 67 (12)* 7.59E-07 t Test
DlCO (% pred) 29 (7) 82 (25)† 9.20E-05 t Test

Definition of abbreviations: BD, bronchodilator; BMI, body mass index; DlCO,
lung diffusion capacity for carbon monoxide; FEV1, forced expiratory volume at 1 s.

Mean (� SD) is shown for continuous variables.
* Three missing datapoints.
† Two missing datapoints.
‡ t Test � two sample t test.

Supplemental Information

Additional information from this study, including the raw image data
from all microarray samples (.DAT files), expression levels for all genes
in all samples (stored in a relational MYSQL database), user-defined
statistical and graphical analysis of data, and clinical data on all subjects
is available at http://pulm.bumc.bu.edu/copdb/. Data from our micro-
array experiments have also been deposited in the National Center for
Biotechnology Information Gene Expression Omnibus (series refer-
ence number GSE1650).

Results

Study Population

Microarrays from 30 subjects passed the quality control filters
described above and have been included in this study. The clini-
cal characteristics of the 18 patients undergoing LVRS and the
12 smokers with mild or no emphysema are summarized in Ta-
ble 1. As expected, the patients undergoing LVRS expressed
more severe airflow limitation, were slightly younger, and had
lower values for DlCO and BMI compared with those who had
curative lung resection. Patients undergoing LVRS had a more
intense exposure to cigarette smoke, although the difference
between groups was not statistically significant.

Genes that Distinguish Severe Emphysema from
Mild/No Emphysema

There were 102 genes in common between 4 or more of the
class prediction algorithms described above (see Figure 1). The
P value for each of these genes (as determined by a two-sample
unequal variance t test performed on log-transformed expression
data) along with an associated Q value (which represents the
proportion of false positives) is reported in Table E2 in the
online supplement . A total of 76 genes (75%) were upregulated
in the lungs of smokers with severe emphysema as compared
with those with mild or no emphysema. On leave-one-out cross-
validation, 86–93% of samples were correctly classified by the
various class prediction algorithms applied (see Table E1 in the
online supplement for details). A large number of genes upregu-
lated in the lungs of smokers with emphysema were extracellular
matrix (ECM)–related genes, whereas many immune and cell
signaling–related genes were downregulated in the lungs of smok-
ers with severe emphysema. Statistically overrepresented gene
ontology categories of molecular function include ECM constit-
uents and stress-related genes having oxidoreductase, isomerase,
and complement activity (see Table E3 in the online supplement).
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Figure 1. Class prediction genes that distinguish severe from mild/no
emphysema. Two-dimensional hierarchical clustering of all 30 samples
according to the expression of the 102 genes chosen by 4 or more class
prediction algorithms to distinguish severe from mild/no emphysema.
HUGO gene ID is listed for all 102 genes. Functional classification of
genes (color-coded) is shown. Samples cluster with their appropriate
clinical classes. Red represents a high level of gene expression, green
represents a low level of gene expression, and black represents the mean
level of expression. N � no/mild emphysema; L � severe emphysema.
Dark blue, ECM/structural protein; orange, cell signaling; black, immune/
inflammation; yellow, redox/stress; pink, metabolism; red, transcription
factors; light blue, ribosomal/protein synthesis; green, cell cycle/apoptosis;
gray, other; white, unknown.

Genes that Tightly Correlate with DLCO and FEV1

There were 92 genes whose level of expression strongly corre-
lated (P � 0.001) with DlCO; 41% were negatively correlated
(i.e., were expressed at higher levels in patients with severe
emphysema) and 59% were positively correlated (i.e., were ex-
pressed at lower levels in patients with severe emphysema).
There were 73 genes that correlated significantly (P � 0.001)
with FEV1. Thirty-three of the above genes correlated with both
DlCO and FEV1. Table 2 shows selected genes illustrating poten-

Figure 2. Selected chromosomal regions linked (LOD scores � 1) with
early-onset COPD that contain at least 1 gene from the class prediction
list of 102 genes that distinguish between severe and mild/no emphysema
(see Figure 1). The average gene expression values for the severe (red)
and mild/no emphysema (blue) groups of patients are plotted for each
gene as bars across each chromosomal region (SD is not shown). The
microarray expression data obtained from the 18 patients with severe
emphysema and 12 patients with mild/no emphysema was normalized
to a mean of 0 and an SD of 1 for each gene before computing the
averages. Differential gene expression between severe and mild/no em-
physema was assessed by a two-sample unequal-variance t test performed
on log-transformed expression data. The P values and q values are re-
ported for each gene with a P value � 0.01. The genes highlighted with
a green arrow are on the list of 102 probe-sets that distinguish between
severe and mild/no emphysema. The genes highlighted with an orange
arrow are not on the list, but have a P value � 0.01.

tial pathogenetic features of emphysema. Genes associated with
redox stress and hypoxia were present in both lists, as were genes
associated with apoptosis. Inflammation-related and immuno-
modulatory genes were also evident, although genes associated
with lymphocyte maturation and with prostaglandin synthesis
negatively correlated only with FEV1. In addition, vascular genes
positively correlated with these clinical measures of emphysema
and were expressed at lower levels in severe emphysema. The
complete list of genes correlated with DlCO, FEV1, and BMI can
be found in the online supplement (Tables E4, E5, and E6).
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TABLE 2. Correlation of gene expression with physiology. Selected genes whose expression tightly correlates with percent-predicted postbronchodilator
forced expiratory volume at 1 s or forced expiratory volume at 1 s and diffusing capacity

Correlation, FEV1 Correlation, FEV1 and DlCO

Function Gene Accession Function Gene Accession

Redox/stress Redox/stress
MICAL2 BE965029 P4HB J02783
HIG2 NM_013332 SERP1 BG107676
RTP801 NM_019058 CRYZL1 NM_005111
MOXD1 AY007239 SCL31A2 NM_001860

Immune/inflammation Immune/inflammation
(in both) PTGS1 S36219 SERP1 BG107676

PTGDS BC005939 C1R AL573058
FKBP1A NM_000801 ECM
HCCR1 NM_015416 NRLN1 AL049176
NOTCH2 AA291203 P4HB J02783
ID4 U16153 ELF3 AF017307

Secretion ACTA2 NM_001613
Tram1 BC000687 PFN2 NM_002628
GORASP2 NM_015530 LUM NM_002345
SSR2 NM_003145 Apoptosis/cell cycle
SPUVE NM_007173 LDOC1 NM_012317

Injury/repair PA2G4 BF669264
FOXF1 NM_001451 LUM NM_002345
klotho NM_004795 MORF4L2 NM_012286

PUM1 D87078
ELF3 AF017307

Definition of abbreviations: DlCO, lung diffusion capacity for carbon monoxide; ECM, extracellular matrix; FEV1, forced expiratory volume at 1 s.

Mapping Gene Expression to Chromosomal Regions

Chromosomal regions containing STR markers with LOD
scores � 1 (23–25) were chosen to investigate if genes that
distinguish between severe and mild/no emphysema were lo-
cated within these regions. Susceptibility loci were selected from
the various linkage studies that included markers with LOD
scores � 1, a statistically significant (P � 0.05) threshold in the
above datasets. A total of 23 chromosomal regions were investi-
gated, and 17 of the 23 different regions were found to contain
1 or more of the 102 class prediction probe-sets that distinguish
severe from mild/no emphysema (Table E9). Several of these
regions also contained additional genes, not present on the class
prediction list, that are differentially expressed (P � 0.01) between
severe versus mild/no emphysema (see Table E10). Regions from
chromosomes 1, 2, and 12 are graphically displayed in Figure 2.

Class Discovery

Clustering dendograms were constructed for each of the 5 fil-
tered gene lists derived from variation filters applied to the 9,336
genes expressed in all resected lungs (see Figure E1 in the online
supplement). BMI was the only clinical variable in our study
that was associated with the pattern of clustering. Each figure
had one cluster of samples, ranging from 5–7 patients that had
significantly lower BMI values (P  0.01) when compared with
the remaining samples outside the cluster. Four patients were
present in the low BMI cluster in all of the five figures con-
structed. To identify genes differentially expressed between the
patients in the lower BMI cluster, an unpaired unequal variance
t test was performed between the 6 patients identified by cluster-
ing on the filtered group of 597 genes and the remaining 12
patients undergoing LVRS across all 9,336 genes. A total of 96
genes with a P value � 0.001 were identified (see Figure E2).
Using EASE, KEGG, and PubMatrix, a number of functional
categories were identified as overrepresented among this list of
genes, including transcription factors, inflammatory mediators,
and a number of genes within the mitogen-activated protein
kinase pathway (Table 3).

Class Prediction: Outcome after LVRS

A total of 9 out of the 14 patients had BODE scores that im-
proved at least one unit after surgery, whereas the remaining 5
patients had BODE scores that remained the same or worsened
after surgery. Using the class prediction algorithms described
above, 17 genes were found in common to 4 or more of the
methods (Figure 3A). On leave-out-one cross-validation, 66–
92% of samples were correctly classified (see Table E11). On
MDS analysis, samples separated into their 2 classes according
to the expression of these 17 genes (Figure 3B).

RT-PCR

Using RT-PCR, we validated the expression of 10 genes that were
differentially expressed between severe emphysema and no/mild
emphysema (see Figure 4).

Discussion

The pathogenetic mechanism of COPD in the lung involves an
amplification of the normal inflammatory response to cigarette
smoke, but the molecular reasons for this amplification have yet
to be elucidated. Whereas the molecular mechanisms underlying
COPD remain unclear, a number of pathways have been impli-
cated, including an imbalance between protease and antiprotease
activity, release of multiple inflammatory mediators with re-
sulting high levels of oxidative stress, and apoptosis of alveolar
cell walls (6). In addition, chronic inflammation and connective
tissue deposition have been shown to narrow small conducting
airways (5). In this high-throughput gene expression study of
emphysematous human lung tissue, we have identified a large
number of genes differentially expressed in the lungs of smokers
with severe emphysema as compared with lungs of smokers
with mild/no emphysema, along with a number of genes the
expression level of which tightly correlates with the physiologic
severity and phenotypic expression of emphysema. These gene
expression profiles have the potential of providing insight into
the molecular pathways involved in the pathogenesis of the dis-
ease. Further, gene expression modifications associated with low
BMI and BODE response after surgery provide support for the
importance of the search for the mechanisms responsible for the
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TABLE 3. Select genes differentially expressed among patients with chronic obstructive pulmonary disease with a low body-mass index

Inflammation Transcriptional Regulation MAP Kinase Response to Stress

BC004490 FOS M58297 ZNF42 NM_004417 DUSP1 NM_004417 DUSP1
BG491844 JUN AL049942 ZNF337 BC003143 DUSP6 NM_005627 SGK
AI984479 MAX M91083 c11orf13 K03193 EGFR M91083 C11orf13
BE311760 HMGB1 BC004490 FOS BC004490 FOS BC004490 FOS
NM_014267 SCAP BG491844 JUN BG491844 JUN BC005979 UBE2B

AI984479 MAX AI984479 MAX BF246436 SUI1
NM_005342 HMGB3 BC005365 MAP2K7 BC005365 MAP2K7
NM_004235 KLF4 BC006325 GTSE
NM_022454 SOX17 NM_002913 RFC1
NM_014267 SCAP NM_012072 C1QR1
NM_002913 RFC1 NM_014267 SCAP
NM_000435 NOTCH3
BE311760 HMGB1
K03193 EGR1

Definition of abbreviation: MAP, mitogen-activated protein.
Functional categories generated with EASE, KEGG, and PubMatrix.

systemic manifestations of COPD and the possible identification
of clinical tests that will predict the outcome of LVRS.

Class Prediction of COPD

It has long been proposed that various proteases break down
connective tissue components in lung parenchyma to produce
emphysema (6). The balance between protease and antiprotease
activity in the lung parenchyma is hypothesized to be disrupted
in patients with emphysema. Increased proteolysis in the lung
leads to aberrant remodeling and/or degradation of the ECM.
Cigarette smoking may induce inflammation and increase the
release of proteases from both neutrophils and macrophages,
and, in smokers who develop COPD, the production of antipro-
teases may be inadequate to neutralize these effects. In our
study, surprisingly few proteases were upregulated in patients
with severe emphysema. Those proteases included cathepsin K,
a cysteine proteinase that degrades elastin, collagen, and gelatin,
as well as the metalloproteinase, MMP2, which specifically cleaves
type IV collagen (27), the major structural component of base-
ment membranes. Interestingly, two antiproteases are upregu-
lated in severe emphysema: SERPINF1, a neurotrophic protein
belonging to the serine protease inhibitor (serpin) family (28),
and TIMP1, a collegenase inhibitor (29).

One of the striking findings in our study is the large number
of ECM-related genes upregulated in severe emphysema (Fig-
ure 1 and Table 2). In experimental emphysema produced by
pancreatic or neutrophil elastase, connective tissue components
are degraded, leading to enlargement of distal airspaces (30).
Both elastin and collagen are rapidly resynthesized in these
animal models, and mRNA levels for both are increased, but
the connective tissue remodeling process is ineffective and lung
mechanical properties remain abnormal (31). The increased lev-
els of ECM mRNAs in severe emphysema (Figure 1) and those
associated with low DlCO (Table 2) suggest that connective tissue
remodeling continues even in severe “end-stage” emphysema in
humans, but that ECM-related proteins fail to effectively restore
the mechanical properties of the emphysematous lung.

In COPD, chronic inflammation leads to a fixed narrowing
of small airways and alveolar wall destruction. This inflammation
is characterized by increased numbers of alveolar macrophages,
neutrophils, and T lymphocytes, along with the release of multi-
ple inflammatory mediators that result in a high level of oxidative
stress (6). Multiple oxidant-related genes in our study were ex-
pressed at lower levels in severe emphysema and correlate posi-
tively with DlCO. Specifically, the gene CRYZL1 bears structural
resemblance to quinone reductase (32), a gene with polymor-

phisms that have been associated with increased susceptibility
to oxidant damage (33). Diminished transcription of this product,
along with decreased levels of the copper transporter SLC31A2,
may promote inflammation or further impair the normal re-
sponse to stress in emphysematous lung (34). Alteration of in-
flammatory pathways may further disrupt the normal response
to stress, as suggested by the tight correlation between DlCO and
CD97, a gene involved in cell adhesion and signaling after leuko-
cyte activation (35).

It has recently been reported that angiogenesis and apoptosis
of the alveolar cell wall may play a role in emphysema (8).
Blockade of vascular endothelial growth factor receptor 2 in rats
induces apoptosis of the alveolar cell wall and results in an
emphysema-like pathology (7). The role of vascular endothelial
growth factor in human emphysema remains unclear. In our
study, a number of angiogenesis-related genes were positively
correlated with DlCO (Table 2), including endothelial cell growth
factor 1, which stimulates endothelial cell growth and chemotaxis
in vitro and angiogenesis in vivo (36), and endomucin 2, which
has a role in tumor angiogenesis (37). The decreased expression
level of vascular-related genes in patients with low DlCO (i.e.,
severe emphysema) likely does not play a causative role, but
rather is secondary to the decreased vascular surface area in
these patients. However, one of the antiproteases that was ele-
vated in severe emphysema, SERPINF1, is also a potent inhibitor
of angiogenesis through FasL-mediated apoptosis of endothelial
cells (38). Although its role in precipitating apoptosis of endothe-
lial cells has been limited to the retina, elevated levels of this
gene in the lung of patients with severe emphysema suggests a
possible pathologic role in mediating apoptosis of the vasculature
and alveolar cell wall.

Correlation with FEV1 and DLCO

The low FEV1 characteristic of COPD is a function of both
intrinsic obstruction to airflow in smaller conducting airways
and loss of lung elasticity reducing the recoil forces that tether
intrapulmonary airways during forced expiration. Lung diffusing
capacity is a function of the total gas exchange surface of the lung,
which is decreased in proportion to the degree of emphysema.
Contrasting genes, the expression level of which correlates with
FEV1 but not DlCO, might represent biologic events intrinsic to
small conducting airways, whereas genes that correlate with DlCO

would be more likely to reflect biologic processes involved in the
genesis of emphysema in gas exchanging portions of the lung.
These findings may represent the genotypic expressions of the
different phenotypes frequently detected in clinical practice (39).
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Expression of several genes associated with hypoxia or redox
stress increase as FEV1 worsens. Low FEV1 is also strongly corre-
lated with increased expression of golgi and endoplasmic reticulum
translocation genes, along with a secretory serine–protease, con-
sistent with increased mucus secretion recently documented in
a histologic study of pulmonary emphysema (5). A number of
genes associated with inflammation and with lymphocyte accu-
mulation also tightly correlate with low FEV1. Two prostaglandin
synthases, the expression of which leads to lymphocytic inflam-
mation, increase with decreasing FEV1, as does NOTCH2, which
potentiates lymphopoesis and differentiation of CD8 cells (40),
and which inhibits expression of Id4, another gene that decreases
as FEV1 falls and which normally acts to block T-cell differentia-
tion (41). Two genes, the absence of which has been associated
with ineffective lung repair after inflammatory cell injury and
with increased lung cell apoptosis, FoxF1 (42) and Klotho, also
decrease with falling FEV1. Klotho expression is suppressed in
hypoxia and in inflammatory states, so its decreased expression
may amplify the detrimental effects of airway inflammation.

Linking Gene Expression to Chromosomes and Candidate Genes

As illustrated by the above discussion, one of the challenges in
analyzing microarray gene expression data is separation of genes
causally involved in a disease from “bystander” genes, the ex-
pression levels of which have been secondarily altered by pri-
mary changes elsewhere (19). Several recent studies in yeast and
mouse models have used microarray-measured gene expression
levels as quantitative traits and genome-wide genotype data to
identify genetic loci that can explain variations in expression
levels (43–45). Schadt and colleagues (45), for example, used a
mouse model of obesity and identified chromosomal loci linked
to gene expression patterns associated with different subtypes
of the complex disease. Human orthologs of the mouse chromo-
somal loci were identified as possible candidates for further studies
of obesity in humans. Integrating various sources of clinical,
genetic, and genomic data has proven to be a powerful strategy
in elucidating complex diseases and, in this study, we have at-
tempted to combine our gene expression data with genetic linkage
studies to identify candidate genes that may be causally involved
in the pathogenesis of COPD. Several chromosomal regions
linked to various phenotypes of early onset COPD have been
identified by Silverman and colleagues (23–25). We mapped genes
differentially expressed between severe and mild/no emphysema
onto these chromosomal regions to find gene candidates causally
implicated in COPD. Future sequence analysis of single-nucleo-
tide polymorphisms (SNPs) located within or near the genes we
identified is needed to determine if an SNP or multiple SNPs
are associated with COPD. Additional studies of these genes
will also be needed to ascertain whether or not the sequence

Figure 4. Quantitative RT-PCR (blue bars) and microarray
(pink bars) data for select genes found to be differentially
expressed between severe emphysema and normal lung tissue
on microarray analysis. For all 10 genes, gene expression was
measured, via quantitative RT-PCR, on 2 normal lung tissues
and 2 lungs with severe emphysema. For each of those four
samples, the level of expression of the gene was calculated
relative to one of the non/mild emphysematous lungs. Fold
change refers to the average level of expression of the gene
across both severe emphysema samples divided by the average
level of expression across both normal lung samples.

Figure 3. Gene expression profile that may predict outcome after LVRS.
(A ) Two-dimensional hierarchical clustering plot of LVRS samples ac-
cording to the expression of the 17 genes chosen by 4 or more class-
prediction algorithms to predict functional outcome at 6 mo after LVRS.
Samples cluster with their appropriate class. Good � good outcome
where there was improvement in BODE score at 6 mo after LVRS;
bad � bad outcome where there was worsening or no change in BODE
score at 6 mo after LVRS. Red represents a high level of gene expression,
green represents a low level of gene expression, and black represents
the mean level of expression. (B ) Multidimensional scaling plot of good
(green boxes) and bad (red boxes) outcome patients undergoing LVRS
in 17 dimensional space (represented in 30 space in this figure) according
to the expression of the 17 genes that predict outcome in these patients.
The two outcome groups separate into their two classes according to
the expression of these genes.
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variations alter the expression of the genes and in turn modulate
the disease phenotype. Although a number of differentially ex-
pressed genes mapped into the chromosomal regions (see Table
E10), we have focused, in the discussion below, on two illustra-
tive examples where suggestive or significant linkage to various
phenotypes of COPD were found.

Whereas upregulation of ECM-related genes in severe em-
physema likely represents a compensatory increase in the expres-
sion of those connective tissue components, matrix �-carboxyglu-
tamic acid protein (MGP), an ECM-related gene, mapped onto
a region of chromosome 12 linked to FEV1, suggesting a causal
role in the pathogenesis of this disease (see Figure 2). MGP
has recently been reported to play a role in lung growth and
development, likely via temporally and spatially specific interac-
tions with other branching morphogenesis–related proteins (46).
Whether aberrant expression of MGP results in an ineffective
connective tissue remodeling process is unclear, but further study
of this gene is warranted. Insulin-like growth factor binding
protein (IGFBP) 5 is another gene upregulated in severe emphy-
sema, and this gene mapped on to a region of chromosome 2
strongly linked to FEV1/forced vital capacity. IGFBPs bind IGF
with high affinity, preventing IGF binding to its receptors and
signaling. IGFBP5-overexpressing transgenic mice have recently
been shown to have decreased growth and muscle development
(47). IGFBPs have also been reported to act through IGF-inde-
pendent mechanisms (48) and to affect apoptosis and cell survival
(49). Further functional studies of MGP and IGFBP5 and their
role in the lung are needed, as is genotyping of SNPs (in and
around these genes) in cohorts with and without COPD, to investi-
gate the genes’ association with the disease.

Molecular Subclass of COPD

In addition to providing insight into disease pathogenesis, high-
throughput gene expression analysis of emphysematous lung
tissue has uncovered potential novel molecular subclasses of the
disease. Several different approaches to unsupervised clustering
of all LVRS samples revealed 4–6 patients who grouped together
across each analysis. Compared with the remainder of the pa-
tients undergoing LVRS, this subgroup demonstrated a signifi-
cantly decreased BMI. COPD is increasingly recognized as a
disease of inflammation that reaches beyond the lungs (14, 50).
Although the precise mechanism of weight loss in COPD has
not been described, it appears to occur largely through muscle
wasting, and resembles cachexia as opposed to weight loss from
caloric restriction (14). Among this class of patients in our study,
the significant number of differentially expressed genes involved
in gene transcription, response to stress, and inflammation (Ta-
ble 3) may reflect an active, persistent inflammatory process initi-
ated in the lung that results in systemic effects such as decreased
BMI. Identification of a subgroup of patients with COPD with
more pronounced inflammation, using biomarkers in serum, could
guide the use of steroids and other anti-inflammatory medications
to prevent the damaging local and systemic responses.

Gene Expression May Predict LVRS Outcome

For patients with severe COPD with inhomogeneous emphy-
sema, medical therapy has proven largely ineffective in improv-
ing dyspnea and functional status, and does not alter pulmonary
function. LVRS has been proposed as a palliative treatment for
certain subgroups of COPD patients with emphysema, but initial
enthusiasm over its application had been confounded by uncer-
tainty about the potential cost and morbidities associated with
LVRS, as well as its beneficial effects (51). Recent reports suggest
that only a subset of patients with emphysema benefit from
LVRS (11), and refinement in patient selection remains a current
goal in the surgical approach to COPD (51). Although our sam-

ple size is small and cross-validation results are inconclusive,
our study raises the possibility that gene expression profiles in
severely emphysematous lung tissue may predict functional out-
come after LVRS. Given the short duration of follow-up in our
study, we elected to use a surrogate marker of survival in emphy-
sema, the BODE index, which predicts the risk of respiratory and
all-cause mortality among patients with COPD (15). If our gene
expression signature can be further developed, validated, and
refined on a larger number of subjects undergoing LVRS, we
may be able to develop assays to measure the protein products
of these genes in the serum. These serum protein products could
then be used as a noninvasive preoperative test to select patients
who are likely to benefit from the procedure.

Limitations

There are a number of important limitations to our study. Given
the limited number of lung tissue specimens available from
LVRS, our sample size for the microarray analyses performed
in the study was relatively small. For the class prediction analyses,
we attempted to address the small sample sizes by the process
of cross-validation, by selecting genes chosen via multiple class
prediction methodologies, and by validating changes for a subset
of genes using quantitative RT-PCR. For the class discovery,
we performed hierarchical clustering of LVRS samples on a num-
ber of different gene lists (determined by variability filters) to
test for a consistent subset of samples that clustered separately.
Given the multiple comparison problem inherent in our correla-
tion analyses, we selected a P value threshold of 0.001 for signifi-
cance, and have validated a number of the more highly correlated
genes via RT-PCR.

Additional studies on larger numbers of severely emphysema-
tous lung tissue are needed to validate our findings and to address
variability in the cellular composition of the tissues given the
heterogeneous nature of the disease. A broader spectrum of
emphysema subjects (i.e., those with mild and moderate disease)
is needed to identify those genes differentially expressed between
mild/moderate emphysema and no emphysema, which may be
implicated in the early pathogenesis of the disease. Due to the
limited sample size of our study, smokers without emphysema
were grouped together with smokers having mild emphysema
as a control group for our patients undergoing LVRS. Compari-
son of smokers without emphysema (n � 5) versus those with
mild emphysema (n � 7) yielded fewer differentially expressed
genes than would be expected by chance (data not shown),
although our study was not powered for this subgroup analysis.
However, hierarchical clustering of all 12 control subjects ac-
cording to the expression of the 102 genes that distinguish sub-
jects of LVRS versus control subjects did not result in separation
of those smokers with mild emphysema from those with normal
spirometry (Figure 1). An additional limitation to our control
group was the fact that a significant number of these patients
(n � 9) had primary lung cancer adjacent to the “normal” lung
tissue studied, raising the concern that gene expression in the
“normal” lung may have been influenced by the adjacent tumor.
Whereas our study was inadequately powered to address the
effects of cancer on the surrounding normal lung tissue, a nonpar-
ametric t test comparing the nine subjects with cancer versus
the three subjects with benign nodules yielded fewer genes at
any given P value threshold than would be expected by chance
(data not shown). In addition, unsupervised analysis of all 12
control samples according to the expression of all genes that passed
a number of variability filters did not reveal clustering of the
cancer and benign nodule subjects into separate groups (see Fig-
ure E3). Finally, although combining genetic and genomic data-
sets can be a powerful methodology, it is unclear whether or
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not the linkage analysis data in the early-onset COPD studies
can be generalized to the COPD population at-large.

In summary, we have identified genes the expression levels
of which can distinguish severely emphysematous lung from
normal lung tissue, as well as genes that tightly correlate with
overall lung function. By linking these gene expression profiles
to chromosomal regions previously associated, via genome-wide
linkage analyses, with severe early-onset COPD, we have identi-
fied candidate genes that may be causally involved in the patho-
genesis of COPD. We also have documented a possible associa-
tion between gene expression and extrapulmonary manifestations
of the disease, such as low BMI. To our knowledge, this is the
first study to combine high-throughput gene expression studies
with genome-wide linkage analysis in human lung disease. A
search for functional polymorphisms in these candidate genes
that may predispose a smoker to COPD may be warranted.
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